Most corals may not change their symbionts
نویسنده
چکیده
Many corals (stony corals and octocorals) rely on their symbiotic algae (zooxanthellae) for survival. Under stress, zooxanthellae are expelled, resulting in coral bleaching. The hypothesis that corals may survive climate change by exchanging algal types is shown here to be potentially applicable only to a minority of corals. Data on 442 coral species from 43 studies reveal that only a few coral species may be able to change their symbionts. The ability to change symbionts seems to be linked to whether a coral species can host multiple zooxanthella clades, either at different depths on the same reef, on different reefs or at different geographic locations, or concurrently within the same colony. The combined data set shows that only 23% of coral species host multiple zooxanthella clades. Most coral species (77%) exhibit fidelity to a narrow subset of a single zooxanthella clade, some even to specific algal genotypes within a clade. These specific algal genotypes in coral species hosting a single algal clade do not change over time. Furthermore, no algal change occurs when a coral colony is either transplanted to different environments, or subjected to stressors such as disease or increased temperatures. For the majority of corals, therefore, algal switching does not appear to occur. These coral species will survive only if the existing host–symbiont combination withstands the changing conditions. If climate warming continues, coral reefs may undergo a change in biodiversity such that only a subset of symbiotic corals may persist.
منابع مشابه
Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.
Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (st...
متن کاملEnvironmental Symbiont Acquisition May Not Be the Solution to Warming Seas for Reef-Building Corals
BACKGROUND Coral reefs worldwide are in decline. Much of the mortality can be attributed to coral bleaching (loss of the coral's intracellular photosynthetic algal symbiont) associated with global warming. How corals will respond to increasing oceanic temperatures has been an area of extensive study and debate. Recovery after a bleaching event is dependent on regaining symbionts, but the source...
متن کاملFidelity and flexibility in coral symbioses
Understanding whether or not corals have the flexibility to change their complement of symbionts to adapt to changing climate is an important goal in reef ecology studies. While host fidelity to a single clade of symbiont is the dominant pattern in present-day corals, current estimates of flexibility are unreliable, because few studies have measured it rigorously and with adequately sensitive g...
متن کاملNot just who, but how many: the importance of partner abundance in reef coral symbioses
The performance and function of reef corals depends on the genetic identity of their symbiotic algal partners, with some symbionts providing greater benefits (e.g., photosynthate, thermotolerance) than others. However, these interaction outcomes may also depend on partner abundance, with differences in the total number of symbionts changing the net benefit to the coral host, depending on the pa...
متن کاملSpatial variation of symbiotic Dinoflagellates on coral reefs of the northern Persian Gulf
Density, mitotic index, Chlorophyll-a content and cell size of symbiotic dinoflagellates of dominant reef-building corals were measured at two different depths in Kish Island and from one depth of Larak Island in the Persian Gulf. The higher densities of symbionts were found in shallow waters of Kish Island. However, ANOVA analyses of the mitotic index yielded mixed results. The cell sizes of s...
متن کامل